#### Sabine Wehnert

Visakh Padmanabhan Ernesto William De Luca

## Hybrid Legal Norm Retrieval:

Leveraging Knowledge Graphs and Textual Representations





FAKULTÄT FÜR INFORMATIK



#### **01** Motivation

Explainability in Information Retrieval

#### **03** Retrieval System

Hybrid relevance scoring

# 02 Related Work in the COLIEE Competition

Explainability of submissions for Task 3 in COLIEE for the past 5 years

04 Results and Conclusion

Performance vs. Explainability





# **Motivation**

Explainability in Information Retrieval



## Motivation

•

- **Prevalence of LLM-based retrieval models** in recent editions of the Competition on Legal Information Retrieval and Entailment (COLIEE)
- Problem: low transparency due to black-box models

Should a high-performing yet unpredictable method be preferred over a more explainable but probably less accurate one?





# **Related Work**

Explainability of submissions for Task 3 in COLIEE for the past 5 years

### COLIEE Task 3 (Statutory Law Retrieval)



(Seller's Warranty in cases of Superficies or Other Rights) Article 566

(1) In cases where the subject matter of the sale is encumbered with for the purpose of a superficies, an emphyteusis, an easement, a right of retention or a pledge, if the buyer does not know the same and cannot achieve the purpose of the contract on account thereof, the buyer may cancel the contract. In such cases, if the contract cannot be cancelled, the buyer may only demand compensation for damages.

#### Query (Hypothesis)

Article (Premise)

There is a limitation period on pursuance of warranty if there is restriction due to superficies on the subject matter, but there is no restriction on pursuance of warranty if the seller's rights were revoked due to execution of the mortgage.

https://sites.ualberta.ca/~rabelo/COLIEE2024/







# **Retrieval System**

Hybrid relevance scoring

**hybrid score**(article,query) = article similarity



hybrid score(article,query) =

$$\begin{split} & w_{art} & \cdot \text{ article similarity} \\ + & w_{comm} & \cdot \text{ commentary similarity} \\ + & w_{prec} & \cdot \text{ precedent similarity} \\ + & w_{cont} & \cdot \text{ context similarity} \end{split}$$

+  $w_{graph} \cdot hops$  score



hybrid score(article,query) =

- w<sub>art</sub> · article similarity + w<sub>comm</sub> · commentary similarity + w<sub>prec</sub> · precedent similarity
- +  $w_{cont}$  · context similarity
- +  $w_{graph} \cdot hops$  score

• Between 0,1 (weights add up to 1)



**hybrid score**(article,query) =

- w<sub>art</sub> · article similarity
- +  $w_{comm}$  · commentary similarity
- +  $w_{prec}$  · precedent similarity
- +  $w_{cont}$  · context similarity
- +  $w_{graph} \cdot \textbf{hops score}$

Textual Similarity

- Graph-- based Distance
- Between 0,1 (weights add up to 1)



## Graphbased Distance



## Graph– based Distance

Query



### Graphbased Distance



### Graphbased Distance



## Textual Similarity

| Transformer-based Pipeline | Term-based Pipeline     |
|----------------------------|-------------------------|
| all-mpnet-base-v2          | BM25 with stemming      |
| bge-m3                     | BM25 with lemmatization |
| bge-large-en-v1.5          | BM25 with n-grams       |
| e5-large-v2                |                         |
| all-MiniLM-L6-v2           |                         |
| all-distilroberta-v1       |                         |

**hybrid score**(article,query) =

- w<sub>art</sub> · article similarity
- +  $w_{comm}$  · commentary similarity
- +  $w_{prec}$  · precedent similarity
- +  $w_{cont}$  · context similarity
- +  $w_{graph} \cdot \textbf{hops score}$

Textual Similarity

- Graph-- based Distance
- Between 0,1 (weights add up to 1)





# Results and Conclusion

Performance vs. Explainability





#### **Best Parameters on Validation Data**

#### BGE-M3

hybrid score(article,query) =

- 0.8 · article similarity
- + 0.1 · commentary similarity
- + 0.0 · precedent similarity
- + 0.0 · context similarity
- + 0.1 · hops score

Graph Threshold = 0.95 Result Threshold = 0.83

#### **BM25**

hybrid score(article,query) =

- 0.5 · article similarity
- + 0.1 · commentary similarity
- + 0.0 · precedent similarity
- + 0.1 · context similarity
- + 0.3 · hops score

Graph Threshold = 0.8 Result Threshold = 0.89

#### Results on COLIEE Task 3 Data (2024)

| Retrieval<br>Model                 | Graph Configuration                                  | # Experiments | Best F2 in training data | Best F2 in validation data |
|------------------------------------|------------------------------------------------------|---------------|--------------------------|----------------------------|
| BGE-M3<br>(Finetuned<br>on COLIEE) | Base graph<br>+ crawled data<br>+ textbook knowledge | 5,236         | 0.837                    | 0.695                      |
| BGE-M3<br>(Finetuned<br>on COLIEE) | Base graph<br>+ crawled data                         | 1,932         | 0.837                    | 0.688                      |
| BGE-M3<br>(Finetuned<br>on COLIEE) | Base graph<br>+ textbook knowledge                   | 588           | 0.837                    | 0.690                      |
| BM25                               | Base graph<br>+ crawled data<br>+ textbook knowledge | 5,236         | 0.604                    | 0.594                      |
| BM25                               | Base graph<br>+ crawled data                         | 1,932         | 0.601                    | 0.580                      |
| BM25                               | Base graph<br>+ textbook knowledge                   | 588           | 0.604                    | 0.579                      |

#### Conclusion

#### Trade-off between performance and explainability

Could be observed, but there are always exceptions

# Benefit of the graph structure

More queries were answered correctly when the graph was used

# Benefit of using the textbooks

Best performances were observed with both, textbook data and further crawled data (commentary, precedent)



#### Conclusion

#### Trade-off between performance and explainability

Could be observed, but there are always exceptions

# Benefit of the graph structure

More queries were answered correctly when the graph was used

# Benefit of using the textbooks

Best performances were observed with both, textbook data and further crawled data (commentary, precedent)

## **Future Work**

#### Try this approach in a RAG setup

Modern way of introducing justifiability to retrieval results



# Thanks!

#### Do you have any questions?

sabine.wehnert@gei.de

**DE** LEIBNIZ INSTITUTE FOR EDUCATIONAL MEDIA |Georg Eckert Institute



**CREDITS:** 

Special thanks to the <u>COLIEE competition</u> organizers for allowing us to use the Task 3 data.

This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>



#### **Grid Search Parameters**

- w<sub>art</sub>: [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
  w<sub>comm</sub>: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
  w<sub>prec</sub>: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
- w<sub>cont</sub>: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
- w<sub>graph</sub>: [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1]

- graph threshold: [0.8, 0.85, 0.9, 0.95]
- result threshold: [0.8, 0.83, 0.86, 0.89, 0.92, 0.95, 0.98]



| Category                                                      | Coverage for<br>articles | Coverage for<br>articles in % |
|---------------------------------------------------------------|--------------------------|-------------------------------|
| Crawled data: Commentary                                      | 547                      | 70.58%                        |
| Crawled data: Precedent                                       | 263                      | 33.94%                        |
| Crawled data: Reference articles                              | 312                      | 40.26%                        |
| Crawled data: Commentary,<br>Precedent                        | 225                      | 29.03%                        |
| Crawled data: Commentary,<br>Reference articles               | 272                      | 35.10%                        |
| Crawled data: Precedent,<br>Reference articles                | 144                      | 18.58%                        |
| Crawled data: Commentary,<br>Precedent,<br>Reference articles | 133                      | 17.16%                        |
| Textbook knowledge                                            | 215                      | 27.74%                        |
| No Crawled Data                                               | 161                      | 20.77%                        |
| No Auxiliary Information (total)                              | 149                      | 19.2%                         |

 Table 1. Coverage for each category of auxiliary information.



#### **Best Parameters on Training Data**

#### **BM25**

hybrid score(article,query) =

- 0.6 · article similarity
- + 0.1 · commentary similarity
- + 0.0 · precedent similarity
- + 0.0 · context similarity
- + 0.3 · hops score

Graph Threshold = 0.9

Result Threshold = 0.8